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for |argx|<x, J¥|<1, 2 =1,2,8,.... This gives, for ex-
ample, Eq. (3.11) below when ¢{=0and I —+1,
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24, W. Wyld, Jr., Phys. Rev. D 3, 3090 (1971).

13We computed the slope to order [(u?)/(m?)]? because
the series X in Eq. (3.15) and Y in Eq. (3.18) converge
less rapidly than that in Eq. (3.11). Although the-

o([(4?)/ (m*)]?) terms are in magnitude only about 15% of
the O(1) + O((u2)/(m?)) terms, they contribute with oppo-
site signs to X and ¥, making the quotient X /Y change
by about 30%. .

143, Tiktopoulos and S. B, Treiman, Phys. Rev. 137,
B1597 (1965).

150ur approximate solution shown in Fig. 3 lies slightly
above the exact solution for & (0)< 5. This is due to the
fact that we have computed « (0) from Eq. (3.11) only up
to first order in (u%)/(m?). Inclusion of higher-order
(12)/ (m?) terms will make it lie below the exact solution
in that region also.
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A Feynman-diagram model of spin-J fermion Regge poles is developed for meson-nucleon
scattering and is used to study the conspiracies arising from two types of Lorentz-invariant
couplings. For a completely symmetric coupling, the model automatically leads to a con-
spiracy relation (M=1) between two leading trajectories of opposite parity which are Mac-
Dowell partners. The second type of coupling, which is antisymmetric in two indices, leads
to an M=3 conspiracy relation between four leading trajectories. At high energies, the

=1 conspiracy favors the scattering of spin-1 mesons with zero helicity in both initial and
final states while the M=% conspiracy favors mesons of helicity 1. Since the M =3 trajec-
tory chooses nonsense coupling at J =%, the lowest spin of a particle on the trajectory is %.

I. INTRODUCTION

In Regge-pole theory Feynman-diagram models
have proven to be a useful tool in studying the an-
alytic structure of the scattering amplitudes.
They provide a convenient method of coupling a
Regge pole to the external particles so that the
basic notions of analyticity are satisfied. In these
models, the introduction of daughter and conspir-
ator Regge trajectories to restore analyticity to
the scattering amplitude® arises in a natural way.
The numerator of the high-spin off-mass-shell
Feynman propagators carries lower-spin compo-
nents which combine to cancel the singular parts
of the spin-J projection operators. Models of this
type were first studied by Van Hove and Durand.?
They have been used to study fermion and boson
daughter trajectories®:* and have been extended to
incorporate boson conspiracies.®*®

This paper studies fermion conspiracies within
the framework of the Feynman-diagram models.
It will be shown that the amplitude for Regge-pole
exchange automatically contains the necessary
conspiring Regge trajectories to maintain analy-
ticity. Since we are studying conspiring Regge

trajectories, the masses of the external particles
will be taken to be equal, so that the daughter tra-
jectories which arise from unequal external mass-
es will decouple from the scattering amplitude.
Signature will be ignored since it can be trivially
included at the end of the calculation.

Within the framework of the one-particle-ex-
change (OPE) model of Van Hove and Durand, we
will see that the conspiracy relations for 7-N
scattering are automatically satisfied by Mac-
Dowell-symmetric? baryon trajectories. We will
then look at the meson-baryon scattering in a more
general four-point coupling model in which the
coupling is via Lorentz-invariant tensors. For
p-N scattering this leads to more complicated
conspiracy relations among the leading Regge tra-
jectories and makes definite predictions about the
p’s density matrix. These predictions depend only
on the form of the Lorentz-invariant couplings and
should be independent of the dynamical details of
the model.

The angular momentum part of the coupling be-
tween the external particles and the Regge pole is
obtained by use of Lorentz-invariant tensors. The
dynamical part of the coupling is taken as a con-
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stant since we are studying the spin structure of

a Regge-pole’s contribution to the scattering am-
plitude. Two types of Lorentz-invariant couplings
are considered: a completely symmetric tensor
and a symmetric tensor which is however antisym-
metric in its last two indices. We shall see that
the 7-N amplitudes only couple to the completely
:symmetric tensor while the p- N amplitudes couple
to both. For the symmetric coupling, the two lead-
ing trajectories (MacDowell partners) conspire to
satisfy angular momentum conservation at =0

in the crossed channel.® For the antisymmetric
coupling there are four leading trajectories which
conspire among themselves to conserve angular
momentum in the crossed channel.

In Sec. II the Van Hove-Durand model for the
back scattering of a scalar boson and a fermion
via the exchange of a spin-J elementary-particle
fermion is developed. The necessary extra factors
of spin are obtained from the relative angular mo-
menta of the external particles. The conspiracy
relations, first studied by Gribov,® are seen to be
a statement of MacDowell symmetry.

In Sec. III the three-point couplings of the OPE
model is generalized to a four-point coupling mod-
el analogous to that of Blankenbecler and Sugar.®
This has the advantage that the spin-J poles in the
scattering amplitude arise dynamically from the
interaction itself and are not postulated a priori
as in the Van Hove model. The spin-J poles arise
from the requirement that the four-point inter-
action satisfy two-particle unitarity in the » chan-
nel. The external mesons are given a unit of spin
so that both the symmetric and antisymmetric
couplings can be studied. The symmetric coupling
leads to an M =3 type conspiracy in which the me-
sons preferentially have zero helicity at high en-
ergy. The antisymmetric coupling leads to an i/
=2 type conspiracy, which favors meson helicities
of 1.

II. ONE-PARTICLE-EXCHANGE MODEL

Before beginning the analysis of the fermion
Regge conspiracies, we introduce the OPE model
to establish notation. The spin-0 meson is taken
to be a scalar 7, the spin-3 fermion to be a N, and
the spin-1 meson to be a p. We shall set all ex-
ternal masses equal to y since we are not study-
ing daughter trajectories. The exchanged particle
of spin J has mass m=m(J). The Mandelstam vari-
ables s, ¢, and « are used. Since we are looking
at backward scattering in the s channel, s and «
(as shown in Fig. 1) are the relevant variables.

At each vertex an effective interaction Hamilton-
ian density for scalar coupling may be taken to be

N
po+a™d

FIG. 1. u-channel spin-J pole.

5 =g (NpD]V (06 d(x)pd, (x)+H.c.,
2.1)
where
5;1:%(5’”—‘5;1),
J=1l+3,
[l ST PR L
r(i+2)
2r2(1+1) °

¥(x) is the nucleon field, ¢(x) the pion field,
and y 4,(x) the field of the spin-J fermion. The
factor [p(1)]/2 has been extracted from g (J) for
convenience. This form of the Hamiltonian corre-
sponds to minimal derivative coupling.

The u-channel amplitude for 7-N elastic scatter-
ing through the spin-J pole is obtained by using
the interaction Hamiltonian at each vertex and

TOGTED =D Thyunlm?),

p()=

where I']J., (7?) is the numerator of the spin-J
propagator and is discussed in the Appendix. We
contract the factors of (Q,,)’ as shown in the Ap-
pendix to obtain the Feynman amplitude:

2 - oy (=1 T4 H] i
F =gt (o) ELE sl @ v,

o Q1N
£O =g b rm
X[P1+1'(Z)+')”G‘Q'Y'G‘QPI'(Z)]“’ (2'2)
where p=vu and G, =g,,— pup,/m?.

The Feynman amplitude for pseudoscalar cou-
pling is obtained from an interaction Hamiltonian
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like Eq. (2.1) with the substitution (3“ Y~ iys(gp)’.
The amplitude is trivially obtained from Eq. (2.2)
by the replacement  (J) ~ —m (J).

The identity

b+m =(p+m)<%£>— (p—m)(p—z;é)

separates the amplitude F’ into states of definite
parity. Assuming the proper “smoothness” prop-
erties and asymptotic behavior of g2(J) and m(J),
the sum over J of the parity amplitudes is done
by using the Sommerfeld-Watson transformation.
Each resultant parity amplitude has a moving pole
at J=a(u) where m* a{u)) - u=0.

Although it is not essential to the results of this
section, we shall do the two-particle unitarity
calculation in order to facilitate comparison with
the more sophisticated four-point model. Two-
particle unitarity is satisfied, as expected, by
summing over the self-energy bubbles of the spin-
J propagator. In the case of unequal external
masses, the unitarity calculation is essential in
order that the fixed daughter poles be removed
from the amplitude.®~*

As a model for the unitarity sum we assume that
the dominant contribution to the full propagator
comes from the two-particle intermediate states
(Fig. 2). Since the calculation is similar to that in
Sec. III, it will not be given here. The unitarized
propagator is given by

T;{:iv =fJ ¥ P)r;{;iy m?),
where f7*(p) is the self-energy function and con-

tains the propagator’s pole. The resulting integral
equation is easily solved.

f"*(p)=[m¥p—g2(J)<i—2% - 1>9(p, lﬂ-l , (2.3)

. (_d% |2
9(p, l)’“‘f @n)* [Gp+ RV -] [Gp- RV - v*] "
(2.4)

A cutoff parameter should be introduced here
since 9(p, I) diverges for large #%. If we were
using a more realistic coupling constant, it would
be profitable to introduce a cutoff. We shall not
explicitly write the cutoff parameter for the self-
energy integrals.

The unitarized spin-J amplitude is given by

FI* =g2(J) I Qlll IQ IIﬁ(%%)
X[P,,,(2)+7-G+Q"y-G-QP, (2 )] uf ' *(p)
(2.5)

To obtain the full amplitude for Regge exchange,

&

FIG. 2. Two-particle unitarity equation
for the propagator.

the signature factor should be included here. (It

is an inessential complication and will be ignored.)
Performing the Sommerfeld-Watson transforma-
tion, we get '

£_ 2 0! oy~ /2& 1 — ﬁip
P =gt )@ llQhe /s e q(£22)

X[Pa+1/2’(zu)+'y'G'Q’y'G~QP -1/2"(2)]u,
(2.6)

where «,(p) is the largest root of the equation

m;p—(igji—i—1)9(1>,l)=J—a1(p)=0. (2.7)
We then take the standard limit of large physical
s and small fixed . The s-channel helicity ampli-
tudes must exhibit the proper analyticity properties
at #=0. This is most easily shown in terms of s-
channel angular momentum conservation for back
scattering. The s-channel helicity amplitudes in
the limit s ~« and u =p*—~0 are given in Table I.
Note that individually the nonflip parity ampli-
tudes are nonvanishing for vz =0 and thus violate
angular momentum conservation; however, the

.Regge trajectories of opposite parity conspire so

that their sum does vanish. This conspiracy was
first discussed by Gribov® and is simply a state-
ment of MacDowell symmetry,

F(p)==F”"(-p).

It is interesting, too, that the trajectory func-
tions given by Eq. (2.6) are approximately linear
for small p. However, it is easy to adjust the
model so that a_( p) does not rise high enough to
produce physical poles for positive p. Thus the

TABLE I. Parity-conserving helicity amplitudes for
7-N scattering. [Only the energy dependence from Eq.
(2.6) is given; all other factors are the same.)

<
&
+
D=
|
[ME

+1 +5® —ga

-3 s¢ +g%
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problem of baryon resonances of opposite parity
can be avoided. Although this'seems to be a gen-
eral feature of the model which comes from the
p+m term in the Feynman propagator, it depends
crucially on the dynamical nature of the coupling
constant and the integral 9 (p, 1) [Eq. (2.4)].

The poles in the u-channel partial-wave ampli-
tudes are not dynamical poles in the sense that
they are not due to bound states or resonances.
They arise because elementary spin-J particles
were introduced into the interaction Hamiltonian
and are analogous to Castillejo-Dalitz-Dyson
poles.

III. FOUR-POINT COUPLING MODEL

In this section we shall look at the elastic scat-
tering amplitude in the case where the external
mesons carry a unit of spin and the interaction
proceeds through a four-point coupling. The spin
of the meson allows the external particles to cou-
ple via a symmetric and an antisymmetric Lo-
rentz-invariant tensor. The four-point coupling
model has the advantage that the elementary-par-
ticle spin-J poles of the OPE diagram are replaced
by dynamical ones which arise from the inter-
action.

The interaction Hamiltonian which generates a
symmetric four-point interaction between a meson
and a nucleon may be taken to be

5= (=D AW P H 56 s,

Xeﬁ’:‘ (;\c)‘S‘:Jvlevl(x)(av)l'lyvl+1 d(x)+H.c.,

(3.1)
where €, (x) is the meson’s polarization vector,
and S} is the totally symmetric unit matrix. This
Hamiltonian can be obtained from that of the OPE
model discussed in Sec. II by taking the formal
limit 7 (J) - = so that g2(J)/m (J) =~ A(W)/ 1.

The Born term for the four-point amplitude in a
state of spin J is given by

I+1
21+ 3

X (@) vy, Sita vy, €, @) T u. (3.2)

F7 =(=1) A7) u~p(1)

u

S,’,’{,,‘ can be expanded in terms of the projection
operators of spin J, J-1,....

We now require that the amplitude satisfy two-
particle unitarity in the » channel. Equation (3.2)
can be used as the irreducible kernel in the Bethe-
Salpeter equation (Fig. 3). If we were to treat the
dynamics realistically, the coupling constant A(J)
should also depend on p?, @? and/or @’2. By tak-
ing A(J) to be constant, the integral equation can
be solved exactly and clearly exhibits the spin
structure of the scattering matrix. This structure

would remain basically unaltered even if a more
complicated kernel were used.

After assuming that the coupling constant can be
pulled outside the self-energy integral, taking the
trace, solving for the self-energy function, and
taking the Regge limit, we obtain for the amplitude

Cip,
1-(1£p/2u)s(p,0)°

Fip, =i N (3.3)

where

s __Ala) Tlo,+3) s
16vV7 u? Mla,+1) ’

8(p, ) =3(a+3)A(a)

a4k lE]za—a

@0* [+ = 12][Gp- kP - u]
The C; . are given in Table II. Only those ma-
trix elements which have the full s® strength are
given in Table II. If either external p has nonzero
helicity the amplitude is down by a factor of s~*,
As before, the parity amplitudes which individually
violate angular momentum conservation at =0
conspire with their MacDowell partners. The to-
tally symmetric p- N elastic scattering amplitude
is identical (up to numerical factors) to the 7-N
amplitude discussed in Sec. II. .

Now we turn our attention to p-N elastic scatter-
ing where the coupling is given by a symmetric Lo-
rentz tensor with its last two indices antisymmet-
ric. We replace the tensor S}! in the interaction
Hamiltonian of Eq. (4.1) by ©,,}Z, an antisymmet-
ric tensor of rank [+2.%:°

1+1 1+2
SU:U e eu;y ’

X3

1+2

1
Oy _mgr)mg“ﬂ’!gﬂzvz' 8y
X(g“1+1”z+1g“¢+z Vi+e

_g“t+1”l+2g“t+2’/l+1) .

Let us define orthogonal projection operators of
normal and abnormal parity. Since the p has neg-
ative intrinsic parity, states of normal parity
formed from [ factors of Qare given by —(-1)".

TABLE II. Leading parity-conserving helicity ampli-
tudes for p-N scattering via a symmetric Lorentz cou-
pling. (The amplitudes in which the p’s polarization is
#1 are down by a factor s~! and are not given.)

Ai
(E’E) (E',u) 0:‘*“% 0,—%
0,+3% +1 -1
0,—3% 1 1
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©/12=Vitl+ Altl+ (lower-order spins),  (3.4)
Vit == 3T e e (09
XNk i1t az XKV Y00 3.5)
AL =ATEL e e e pZ)&;iz&
X(gﬂuzkgﬂzu?\ —gﬂt+2>\gﬂz+1f<)
X(8u, k' 8uy, N = Guyy gV By i) s (3.6)
A7 25 Y AL oy
Ve Vi,

Here €, ,,, is the totally antisymmetric unit ten-
sor. In the c.m. frame, V'+l forms a state of spin

\
-Q +Q \
1 30 A bpea

FIG. 3. Bethe-Salpeter equation.

and ALt} a state of parity (-1)' from Q
Qy, (pre)
The external factors of Q, and €y, ,, are con-
tracted to obtain the Born term for the antisymmet-
ric coupling. This Born term is then used as the

kernel in the Bethe-Salpeter equation to obtain the

wre ey

J and parity —(-1) from Q,,l, Q Hyy ot s Q"l X e“m unitarized spin-J projection operator

T = (= 1)’A(J)u'1p(l)21+3yu,+1

X(@1+z +1 d*k Oii® dailkeo)' (B~ K+ M &opiirg =
Ky OLB (2 )4

p2(zp = k) 3D - B)\] Ton.y e(kx)')
[Go+RP - w2][Gp= kP - 4] Ve
(8.7

where « and g are spinor indices. T can be expressed in terms of the projection operators A7 and V7
T'=(a+bP)A7 + (0+w PV + - . (3.8)

To solve for the expansion coefficients a, b, v, and w, multiply 77 by A7, A7, pV’, and V7, take the
trace, and solve for the coefficients. The identity

s bp= (1‘ 1’)( +bp)+( 1‘)(a b) 3.9)

separates the states of definite parity from the nucleon spinor. We then obtain

I —md+ J=
Tu:v‘_Tu:v+T#:v

) [l (p+B)/2p
=(=1'p(DA) p = (p/20+ s, Vi

(p+B)/2p
+(1 ~{@rp2ps, A

1-(1-p/2u)8,

(p=p/2p "
1o (1= p2 )9, V">]’ (8.10)

(p=B)/2p AZ.)

d*k |K[*2[(1- pP/4p%) [K|® - k*(21+1)/1]

=1 ;
9,=3M(J)i @)t [(%erk)z_ #2][(%1)— EY — “2] ’ (3.11)
l+1 a‘k k2
g .
v =21 A | Gy (@ 07— 211G - P - 7] (3.12)
The unitarized amplitude for p- N scattering is then given by
F/=uef¥ QL) T}, (Q,)e €y, 0 (3.13)

After contracting in the factors of (Q,) e it is convenient to divide F’ into four parts, F'* and F4*. The

parity states of F’ are given by

Vr+2
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Fi*=fFV* L p4% (3.14)
A _LQOL (0 p-0) (BB p, ey 3.15
F& = 20 1"(1ip/2u)9,4 1)2 u 2p [Pl+1 (zu)+7’ Q'y-QP, (Zu)]u9 ( )
AlJ dk ' =7 ' - A= . O m 10}
e IO a6 ety G- b () 2402 QL1 (e + REP, (2,
+ &% E[Py,,"(2,)+ F'FP,"(2)]+ @ Q@' y-G-€+T-Qy-G- e*@)P,"(2,)}u
(3.16)
where extra factors of (-«)'/? and/or s™* are not given
14 = +1 =4 X (product of nucleon helicities). exactly.

(3.17)

By making a Wick rotation 2, - ik, and calculat-
ing the angular part of the four-dimensional inte-
grals, we can show that 9 ,4(p, !) and 9,(p, I) are
equal at # =0. This is necessary in order to have
the poles in all the denominators occur at the same
value of J and thus be able to form conspiracy re-
lations.

Each parity amplitude F7* has been divided into
two parts (A* + V¥). The calculation and interpre-
tation has been done in terms of the four trajec-
tories so that the contributions of each term could
be identified. Since the trajectory functions as-
sociated with A* and V* are different away from
u=0, this interpretation of four different trajec-
tories seems the most natural.

As before the Reggeized amplitudes are calcu-
lated in the limit of s -« for small fixed u:

Fr 2L/ N0 + NGl )
AT ( 1-(1+p/2u)9y 1-(17p/21)9, )’
(3.18)

where V3, and @5, are given in Tables III and
IV. The complete helicity amplitudes for F* are
given in Table V. The amplitudes which contain

The expansion in powers of v« around V& =0
shows that all the helicity amplitudes vanish with
the correct power of (~«)%. For example,

(840, 1) - (0, D][1+9(0, 1]

Fyaa72 ~ (V=u)? [(1-9(0,DP

+O((-u)*'?). (3.19)

The amplitudes of Table V are those for which
the p has helicities of +1. If either p has zero he-
licity, the amplitudes are down by at least a fac-
tor of (—u).

The Lorentz-invariant antisymmetric coupling
leads to four leading trajectories: the normal- and
abnormal-parity trajectories and their MacDowell-
symmetric partners. I either the normal- or ab-
normal-parity amplitude appeared by itself, angu-
lar momentum conservation would be violated even
though its MacDowell partners were also consid-
ered. (This is most easily seen by looking at the
F, 5,1/, amplitude.) Then, in order to restore an-
gular momentum conservation at« =0, we would
bé forced to require that A(J) contain an evasive
factor of # and all helicity amplitudes would then
vanish at « =0,

Continuation of the helicity amplitudes down to

TABLE Il. Parity-conserving helicity amplitudes for the axial-vector part of p-N scattering
via an antisymmetric Lorentz tensor (8 ~v—u). a* listed below are defined by Eq. (3.18).

As \ A

(€, @) (€ ,u) 1,-3 1,+3 0,-% 0,+3 -1,-3% -1,+3

1,-} £ 1 B B Fi -1

1,+3 -1 £ -8 +f 1 ¥

0,-% B -8 Fip? -2 +iB B

0,+3 B i B ig? -B +if
-1,-3 ¥4 -1 Fi -8 * 1
-1,+3% 1 ¥i B FiB -1 +f
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TABLE IV, Parity-conserving helicity amplitudes for
the vector part of p-N scattering via an antisymmetric
Lorentz tensor. (The amplitudes in which the p’s polari-
zation is zero are down by a factor of s~! and are not
given,) 0* listed below are defined by Eq. (3.18).

A A
(€,@) \ (€ ,u) 1,-% 1,+3 -1,-% -1,+3}
1,—% +i] 1 +] 1
1,+% -1 x=(l-1) -1 1
-1,-% +i] 1 (1 ~1) l
~1,+% -1 +1 -1l 1

a =13 (I=0) shows that the amplitude must choose
nonsense in order to eliminate the pole in the

Fy /532 amplitudes. Thus there is a zero in the
residues of the F,,,,,, amplitude and there are no
M=% particles!® with spin less than 2.

The symmetric Lorentz coupling leads to an
M=% trajectory which favors p’s of zero helicity,
while the antisymmetric coupling leads to an M=32
trajectory which favors p helicities of +1. The
M=% trajectory requires that the external particles
have a combined spin of 2. None of the presently
identified baryon trajectories are of this type. In
order to identify an M= 3 trajectory one would have
to look at reactions like

aN -~ pA
YN - pN

and see if p helicities of +1 are favored in the
backward hemisphere. At high energies, where
the contribution of order s™! would be relatively
small, one could determine whether M= 2 trajec-
tories contribute to the scattering amplitude by
looking at the density matrix of the final-state par-
ticles. Up to angular momentum factors of (—u),
the A\, = (23, ¥2) amplitudes, and the A, = (3, ¥3)
amplitudes of an M=3 trajectory would be roughly
equal. For anM =3 trajectory the (+%, ¥2) ampli-
tudes would be suppressed.

High-energy polarization measurements would
be crucial in determining whether the antisym-
metric Lorentz coupling does occur.

ACKNOWLEDGMENT

I am grateful to Professor Robert L. Sugar for
suggesting this problem and for many useful dis-
cussions.

APPENDIX

This Appendix briefly discusses the projection
operator for a fermion of arbitrary half-integral

TABLE V. Full parity-conserving helicity amplitudes
for p-N scattering via an antisymmetric Lorentz tensor
near (—#)=0. [The amplitudes in which the p’s polariza-
tion is zero contain extra factors of (~«) and are not
given,] The amplitudes are a combination of ¢* and ©*
as given by Eq. (3.18).

A Ay
(€,&) \(€',») 1,-% 1,+3 -1,-% -1,+3
1,-3 +2il -0 0 -2l
1,+% 0 +€@l-1) 21 0
-1,-% 0 -21 +(21 —1) 0
—1,+% 21 0 0 +241

spin. The formulas for contracting it with external
factors of angular momentum and spin are also
given. The spin-J projection operators are dis-
cussed in detail by Fronsdal'! and Steele.*

The spin-J wave function is defined as an irre-
ducible representation of the Lorentz group.'® The
spin-J (J=1+3%) wave function is constructed by
taking the direct product of I spin-1 wave functions
and a spin-3 spinor and projecting out the lower-
spin components. The numerator of the on-mass -
shell spin-J Feynman propagator is given by the
spin-J projection operator. The projection oper-
ator is given by

J N Y
ocp uB 1) Z; E‘;p E)’ég

I+1 p+m
2z+3‘§m oo L) 7upy D

where ew is the spin-J wave funetion and 1'"“(172)

is the projection operator for integer spin /+1.
Contraction of the integer-spin projection oper-

ator with the external momentum vectors yields

@' Tha) - Qu)' = (<1 255 @111 i),

(A2)
where

_ Gy Qy

e xcon0 == G, ®

G;w:gpu"pupu/pz, (A4)

Tr@21+2
P(l)=27'1(.,—2—(;—+'1)', (A5)
.u'zlJ'lu'z"'lJ'l' (A6)

Since I‘:,;”(pz) is symmetric in all its indices, the
scalar product can easily be calculated when one
or more of the external factors are different from
@, by making the substitution



(K3

4,Q) "~ T4 -2)@,), (A7)

where 9 is the derivative with respect to Qu, . Us-
o}
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ing this substitution we can calculate the matrix
elements with the numerator of the spin-J Feyn-
man propagator.

@)y Tuts @)+, (@) = (1+1)2(y - 9")(y - 8)(@)™* - T () - @)™

21+3

=1 v QR TlQ'1Q1 P, (2) +@ '@ P, (2)] - (A8)

(1+1)p(1)

When the external mesons carry a unit of spin, there are two more factors different from @ which must

be contracted with the propagator.
-1 (l+ 1)(—1)l

N= . i+ . 21+3)6(])
(Qu) lAuz'}’“zu r#”%(pz) Y”t+1B"1(Q”)’ (21+3)p(1)

_ |Q/|l—3lQll-3
TOR(l+1p

(A-Q'B-Q{-|Q'l|QI[P.,""~(@21+3)P/" ] 'R P, - 2L+ )P, ;"] }

-A-QB-Q"(Q'lIQ| Py, +@'@P,""")+A -G+ B(IQ'||Q|P,,," +@'@P,")|Q"| Q]
-1Q'1?|QI*y + G:Ay-G-BP|+(A-QB-Q+A-Q'B-Q' X|Q'||Q|P,"""+@'@P,_,""")
+(A-QR'B+B-QARP,|Q'IQ| -4 -Q'@"BIQI*+B-QARIQ'I*)P,-,') .

These formulas are used for calculating the ma-
trix elements in the text.

As was first emphasized by Durand,® the off-
mass-shell Feynman propagator for integer spins
carries lower-spin components. One takes the
propagator off mass shell by making the substitu-
tion

Gyu=gpu"pp2py"guv-;%- (AIO)
When the propagator is written as I‘L;,,(mz), we
mean that the p* in every factor of G, is replaced
by m2(J).

For half-integer Feynman propagators the off-

(A9)

T

mass-shell continuation is more difficult.* When
one makes the normal continuation, the spin-J
propagator also picks up an extra spin-J compo-
nent in addition to the lower -spin components.
Steele? has shown how to make an off-mass -shell
continuation which does not have the extra spin-J
component. This continuation has the effect of
modifying the coupling of the secondary trajec-
tories. In this calculation, we are only working to
leading order in the spin and do not need to con-
sider the complications in the secondary trajec-
tories which arise from the off-mass-shell con-
tinuation.
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